\(\int \frac {a+a \sin (e+f x)}{(c-c \sin (e+f x))^{7/2}} \, dx\) [297]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 145 \[ \int \frac {a+a \sin (e+f x)}{(c-c \sin (e+f x))^{7/2}} \, dx=-\frac {a \text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{32 \sqrt {2} c^{7/2} f}+\frac {a \cos (e+f x)}{3 f (c-c \sin (e+f x))^{7/2}}-\frac {a \cos (e+f x)}{24 c f (c-c \sin (e+f x))^{5/2}}-\frac {a \cos (e+f x)}{32 c^2 f (c-c \sin (e+f x))^{3/2}} \]

[Out]

1/3*a*cos(f*x+e)/f/(c-c*sin(f*x+e))^(7/2)-1/24*a*cos(f*x+e)/c/f/(c-c*sin(f*x+e))^(5/2)-1/32*a*cos(f*x+e)/c^2/f
/(c-c*sin(f*x+e))^(3/2)-1/64*a*arctanh(1/2*cos(f*x+e)*c^(1/2)*2^(1/2)/(c-c*sin(f*x+e))^(1/2))/c^(7/2)/f*2^(1/2
)

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {2815, 2759, 2729, 2728, 212} \[ \int \frac {a+a \sin (e+f x)}{(c-c \sin (e+f x))^{7/2}} \, dx=-\frac {a \text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{32 \sqrt {2} c^{7/2} f}-\frac {a \cos (e+f x)}{32 c^2 f (c-c \sin (e+f x))^{3/2}}-\frac {a \cos (e+f x)}{24 c f (c-c \sin (e+f x))^{5/2}}+\frac {a \cos (e+f x)}{3 f (c-c \sin (e+f x))^{7/2}} \]

[In]

Int[(a + a*Sin[e + f*x])/(c - c*Sin[e + f*x])^(7/2),x]

[Out]

-1/32*(a*ArcTanh[(Sqrt[c]*Cos[e + f*x])/(Sqrt[2]*Sqrt[c - c*Sin[e + f*x]])])/(Sqrt[2]*c^(7/2)*f) + (a*Cos[e +
f*x])/(3*f*(c - c*Sin[e + f*x])^(7/2)) - (a*Cos[e + f*x])/(24*c*f*(c - c*Sin[e + f*x])^(5/2)) - (a*Cos[e + f*x
])/(32*c^2*f*(c - c*Sin[e + f*x])^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2729

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*Cos[c + d*x]*((a + b*Sin[c + d*x])^n/(a*d
*(2*n + 1))), x] + Dist[(n + 1)/(a*(2*n + 1)), Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d},
 x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2759

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[2*g*(g
*Cos[e + f*x])^(p - 1)*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(2*m + p + 1))), x] + Dist[g^2*((p - 1)/(b^2*(2*m +
p + 1))), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, g}, x] && Eq
Q[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] && NeQ[2*m + p + 1, 0] &&  !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2*
p]

Rule 2815

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Di
st[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0,
 n, m] || LtQ[m, n, 0]))

Rubi steps \begin{align*} \text {integral}& = (a c) \int \frac {\cos ^2(e+f x)}{(c-c \sin (e+f x))^{9/2}} \, dx \\ & = \frac {a \cos (e+f x)}{3 f (c-c \sin (e+f x))^{7/2}}-\frac {a \int \frac {1}{(c-c \sin (e+f x))^{5/2}} \, dx}{6 c} \\ & = \frac {a \cos (e+f x)}{3 f (c-c \sin (e+f x))^{7/2}}-\frac {a \cos (e+f x)}{24 c f (c-c \sin (e+f x))^{5/2}}-\frac {a \int \frac {1}{(c-c \sin (e+f x))^{3/2}} \, dx}{16 c^2} \\ & = \frac {a \cos (e+f x)}{3 f (c-c \sin (e+f x))^{7/2}}-\frac {a \cos (e+f x)}{24 c f (c-c \sin (e+f x))^{5/2}}-\frac {a \cos (e+f x)}{32 c^2 f (c-c \sin (e+f x))^{3/2}}-\frac {a \int \frac {1}{\sqrt {c-c \sin (e+f x)}} \, dx}{64 c^3} \\ & = \frac {a \cos (e+f x)}{3 f (c-c \sin (e+f x))^{7/2}}-\frac {a \cos (e+f x)}{24 c f (c-c \sin (e+f x))^{5/2}}-\frac {a \cos (e+f x)}{32 c^2 f (c-c \sin (e+f x))^{3/2}}+\frac {a \text {Subst}\left (\int \frac {1}{2 c-x^2} \, dx,x,-\frac {c \cos (e+f x)}{\sqrt {c-c \sin (e+f x)}}\right )}{32 c^3 f} \\ & = -\frac {a \text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{32 \sqrt {2} c^{7/2} f}+\frac {a \cos (e+f x)}{3 f (c-c \sin (e+f x))^{7/2}}-\frac {a \cos (e+f x)}{24 c f (c-c \sin (e+f x))^{5/2}}-\frac {a \cos (e+f x)}{32 c^2 f (c-c \sin (e+f x))^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 3.08 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.30 \[ \int \frac {a+a \sin (e+f x)}{(c-c \sin (e+f x))^{7/2}} \, dx=\frac {a \left (12 \sqrt {2} \arctan \left (\frac {\sqrt {-c (1+\sin (e+f x))}}{\sqrt {2} \sqrt {c}}\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^6 \sqrt {-c (1+\sin (e+f x))}+2 \sqrt {c} (-14 \cos (2 (e+f x))+131 \sin (e+f x)+3 (38+\sin (3 (e+f x))))\right )}{768 c^{7/2} f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^5 \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \sqrt {c-c \sin (e+f x)}} \]

[In]

Integrate[(a + a*Sin[e + f*x])/(c - c*Sin[e + f*x])^(7/2),x]

[Out]

(a*(12*Sqrt[2]*ArcTan[Sqrt[-(c*(1 + Sin[e + f*x]))]/(Sqrt[2]*Sqrt[c])]*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^6
*Sqrt[-(c*(1 + Sin[e + f*x]))] + 2*Sqrt[c]*(-14*Cos[2*(e + f*x)] + 131*Sin[e + f*x] + 3*(38 + Sin[3*(e + f*x)]
))))/(768*c^(7/2)*f*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^5*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*Sqrt[c - c*S
in[e + f*x]])

Maple [A] (verified)

Time = 2.09 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.68

method result size
default \(\frac {a \left (24 \sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, c^{\frac {9}{2}}+32 \left (c \left (\sin \left (f x +e \right )+1\right )\right )^{\frac {3}{2}} c^{\frac {7}{2}}-6 \left (c \left (\sin \left (f x +e \right )+1\right )\right )^{\frac {5}{2}} c^{\frac {5}{2}}+3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \left (\sin ^{3}\left (f x +e \right )\right ) c^{5}-9 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \left (\sin ^{2}\left (f x +e \right )\right ) c^{5}+9 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sin \left (f x +e \right ) c^{5}-3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{5}\right ) \sqrt {c \left (\sin \left (f x +e \right )+1\right )}}{192 c^{\frac {17}{2}} \left (\sin \left (f x +e \right )-1\right )^{2} \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}\) \(243\)
parts \(\frac {a \left (-15 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \left (\sin ^{3}\left (f x +e \right )\right ) c^{2}+30 \sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, c^{\frac {3}{2}} \left (\sin ^{2}\left (f x +e \right )\right )+45 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \left (\sin ^{2}\left (f x +e \right )\right ) c^{2}-100 \sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, c^{\frac {3}{2}} \sin \left (f x +e \right )-45 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{2} \sin \left (f x +e \right )+134 \sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, c^{\frac {3}{2}}+15 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{2}\right ) \sqrt {c \left (\sin \left (f x +e \right )+1\right )}}{384 c^{\frac {11}{2}} \left (\sin \left (f x +e \right )-1\right )^{2} \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}-\frac {a \left (42 \left (c \left (\sin \left (f x +e \right )+1\right )\right )^{\frac {5}{2}} c^{\frac {5}{2}}-21 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \left (\sin ^{3}\left (f x +e \right )\right ) c^{5}-224 \left (c \left (\sin \left (f x +e \right )+1\right )\right )^{\frac {3}{2}} c^{\frac {7}{2}}+63 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \left (\sin ^{2}\left (f x +e \right )\right ) c^{5}+216 \sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, c^{\frac {9}{2}}-63 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sin \left (f x +e \right ) c^{5}+21 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{5}\right ) \sqrt {c \left (\sin \left (f x +e \right )+1\right )}}{384 c^{\frac {17}{2}} \left (\sin \left (f x +e \right )-1\right )^{2} \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}\) \(500\)

[In]

int((a+a*sin(f*x+e))/(c-c*sin(f*x+e))^(7/2),x,method=_RETURNVERBOSE)

[Out]

1/192*a*(24*(c*(sin(f*x+e)+1))^(1/2)*c^(9/2)+32*(c*(sin(f*x+e)+1))^(3/2)*c^(7/2)-6*(c*(sin(f*x+e)+1))^(5/2)*c^
(5/2)+3*2^(1/2)*arctanh(1/2*(c*(sin(f*x+e)+1))^(1/2)*2^(1/2)/c^(1/2))*sin(f*x+e)^3*c^5-9*2^(1/2)*arctanh(1/2*(
c*(sin(f*x+e)+1))^(1/2)*2^(1/2)/c^(1/2))*sin(f*x+e)^2*c^5+9*2^(1/2)*arctanh(1/2*(c*(sin(f*x+e)+1))^(1/2)*2^(1/
2)/c^(1/2))*sin(f*x+e)*c^5-3*2^(1/2)*arctanh(1/2*(c*(sin(f*x+e)+1))^(1/2)*2^(1/2)/c^(1/2))*c^5)*(c*(sin(f*x+e)
+1))^(1/2)/c^(17/2)/(sin(f*x+e)-1)^2/cos(f*x+e)/(c-c*sin(f*x+e))^(1/2)/f

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 408 vs. \(2 (122) = 244\).

Time = 0.29 (sec) , antiderivative size = 408, normalized size of antiderivative = 2.81 \[ \int \frac {a+a \sin (e+f x)}{(c-c \sin (e+f x))^{7/2}} \, dx=\frac {3 \, \sqrt {2} {\left (a \cos \left (f x + e\right )^{4} - 3 \, a \cos \left (f x + e\right )^{3} - 8 \, a \cos \left (f x + e\right )^{2} + 4 \, a \cos \left (f x + e\right ) + {\left (a \cos \left (f x + e\right )^{3} + 4 \, a \cos \left (f x + e\right )^{2} - 4 \, a \cos \left (f x + e\right ) - 8 \, a\right )} \sin \left (f x + e\right ) + 8 \, a\right )} \sqrt {c} \log \left (-\frac {c \cos \left (f x + e\right )^{2} - 2 \, \sqrt {2} \sqrt {-c \sin \left (f x + e\right ) + c} \sqrt {c} {\left (\cos \left (f x + e\right ) + \sin \left (f x + e\right ) + 1\right )} + 3 \, c \cos \left (f x + e\right ) + {\left (c \cos \left (f x + e\right ) - 2 \, c\right )} \sin \left (f x + e\right ) + 2 \, c}{\cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2}\right ) + 4 \, {\left (3 \, a \cos \left (f x + e\right )^{3} - 7 \, a \cos \left (f x + e\right )^{2} + 22 \, a \cos \left (f x + e\right ) + {\left (3 \, a \cos \left (f x + e\right )^{2} + 10 \, a \cos \left (f x + e\right ) + 32 \, a\right )} \sin \left (f x + e\right ) + 32 \, a\right )} \sqrt {-c \sin \left (f x + e\right ) + c}}{384 \, {\left (c^{4} f \cos \left (f x + e\right )^{4} - 3 \, c^{4} f \cos \left (f x + e\right )^{3} - 8 \, c^{4} f \cos \left (f x + e\right )^{2} + 4 \, c^{4} f \cos \left (f x + e\right ) + 8 \, c^{4} f + {\left (c^{4} f \cos \left (f x + e\right )^{3} + 4 \, c^{4} f \cos \left (f x + e\right )^{2} - 4 \, c^{4} f \cos \left (f x + e\right ) - 8 \, c^{4} f\right )} \sin \left (f x + e\right )\right )}} \]

[In]

integrate((a+a*sin(f*x+e))/(c-c*sin(f*x+e))^(7/2),x, algorithm="fricas")

[Out]

1/384*(3*sqrt(2)*(a*cos(f*x + e)^4 - 3*a*cos(f*x + e)^3 - 8*a*cos(f*x + e)^2 + 4*a*cos(f*x + e) + (a*cos(f*x +
 e)^3 + 4*a*cos(f*x + e)^2 - 4*a*cos(f*x + e) - 8*a)*sin(f*x + e) + 8*a)*sqrt(c)*log(-(c*cos(f*x + e)^2 - 2*sq
rt(2)*sqrt(-c*sin(f*x + e) + c)*sqrt(c)*(cos(f*x + e) + sin(f*x + e) + 1) + 3*c*cos(f*x + e) + (c*cos(f*x + e)
 - 2*c)*sin(f*x + e) + 2*c)/(cos(f*x + e)^2 + (cos(f*x + e) + 2)*sin(f*x + e) - cos(f*x + e) - 2)) + 4*(3*a*co
s(f*x + e)^3 - 7*a*cos(f*x + e)^2 + 22*a*cos(f*x + e) + (3*a*cos(f*x + e)^2 + 10*a*cos(f*x + e) + 32*a)*sin(f*
x + e) + 32*a)*sqrt(-c*sin(f*x + e) + c))/(c^4*f*cos(f*x + e)^4 - 3*c^4*f*cos(f*x + e)^3 - 8*c^4*f*cos(f*x + e
)^2 + 4*c^4*f*cos(f*x + e) + 8*c^4*f + (c^4*f*cos(f*x + e)^3 + 4*c^4*f*cos(f*x + e)^2 - 4*c^4*f*cos(f*x + e) -
 8*c^4*f)*sin(f*x + e))

Sympy [F(-1)]

Timed out. \[ \int \frac {a+a \sin (e+f x)}{(c-c \sin (e+f x))^{7/2}} \, dx=\text {Timed out} \]

[In]

integrate((a+a*sin(f*x+e))/(c-c*sin(f*x+e))**(7/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {a+a \sin (e+f x)}{(c-c \sin (e+f x))^{7/2}} \, dx=\int { \frac {a \sin \left (f x + e\right ) + a}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {7}{2}}} \,d x } \]

[In]

integrate((a+a*sin(f*x+e))/(c-c*sin(f*x+e))^(7/2),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)/(-c*sin(f*x + e) + c)^(7/2), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 372 vs. \(2 (122) = 244\).

Time = 0.41 (sec) , antiderivative size = 372, normalized size of antiderivative = 2.57 \[ \int \frac {a+a \sin (e+f x)}{(c-c \sin (e+f x))^{7/2}} \, dx=-\frac {\frac {12 \, \sqrt {2} a \log \left (-\frac {\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1}\right )}{c^{\frac {7}{2}} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} - \frac {\sqrt {2} {\left (a \sqrt {c} - \frac {3 \, a \sqrt {c} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} - \frac {3 \, a \sqrt {c} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2}}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}} + \frac {22 \, a \sqrt {c} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{3}}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{3}}\right )} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{3}}{c^{4} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{3} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} - \frac {\sqrt {2} {\left (\frac {3 \, a c^{\frac {17}{2}} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} + \frac {3 \, a c^{\frac {17}{2}} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2}}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}} - \frac {a c^{\frac {17}{2}} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{3}}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{3}}\right )}}{c^{12} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}}{1536 \, f} \]

[In]

integrate((a+a*sin(f*x+e))/(c-c*sin(f*x+e))^(7/2),x, algorithm="giac")

[Out]

-1/1536*(12*sqrt(2)*a*log(-(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1))/(c^(7/2)
*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))) - sqrt(2)*(a*sqrt(c) - 3*a*sqrt(c)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)/
(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1) - 3*a*sqrt(c)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2/(cos(-1/4*pi + 1/2*f
*x + 1/2*e) + 1)^2 + 22*a*sqrt(c)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^3/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^
3)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^3/(c^4*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^3*sgn(sin(-1/4*pi + 1/2*f*
x + 1/2*e))) - sqrt(2)*(3*a*c^(17/2)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)
 + 3*a*c^(17/2)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^2 - a*c^(17/2)*(co
s(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^3/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^3)/(c^12*sgn(sin(-1/4*pi + 1/2*f*x +
1/2*e))))/f

Mupad [F(-1)]

Timed out. \[ \int \frac {a+a \sin (e+f x)}{(c-c \sin (e+f x))^{7/2}} \, dx=\int \frac {a+a\,\sin \left (e+f\,x\right )}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{7/2}} \,d x \]

[In]

int((a + a*sin(e + f*x))/(c - c*sin(e + f*x))^(7/2),x)

[Out]

int((a + a*sin(e + f*x))/(c - c*sin(e + f*x))^(7/2), x)